Parasitic Infection

Lecturer: Niwat Kangwanrangsan, Ph.D.
Department of Pathobiology
Faculty of Science, Mahidol University
E-mail: niwat.kan@mahidol.ac.th
Outline:

- Introduction
- Characteristic of parasitic infection
- Cell and tissue alterations from parasitic infection
- Summary / Q&A
Objectives

1. Understand the biology and importance of parasite infectious diseases

2. Explain the cell and tissue defects from parasitic infection

3. Explain the host immune response to parasitic infection
Pathogens

- Bacteria
- Fungus
- Virus
- Parasite
- Prion
How can microorganisms cause disease?

* Infective agents establish infection and damage tissues in several ways

- Contact or enter host cells/tissues and directly cause cell injury/death (interfere cellular mechanism)
- Release enzymes or toxins and damage host cells/tissues
- Over-induce of host cellular responses and cause additional tissue damage
Parasitic infection

“condition that parasites successfully invade the hosts for their food and residence”

The infection usually causes the host defects/ parasitic diseases.

“pathogenic parasites”

Intracellular & Extracellular parasites

Cell/Tissue destruction & Inflammation/Hypersensitivity
Classification of parasites

- **Protozoa**
 - flagellates
 - amoeba
 - sporozoa
 - ciliates

- **Helminths**
 - nematodes
 - trematodes
 - cestodes

- **Arthropods** (e.g. ticks, mites, lice, flea)

Major infective organs

1. Intestinal
2. Blood and tissue
3. Sexually transmitted
Ways to get infections

- **animals** (zoonotic) – Cryptosporidium, Trichinella, ...

- **insect** – Plasmodium*, Trypanosoma*, Leishmania*, Babesia*, ...

- **food** – Giardia, Entamoeba, Cyclospora, Toxoplasma*, Cryptosporidium, Trichinella, Taenia, ...

- **water** – Entamoeba, Giardia, Cryptosporidium, Schistosoma, Dracunculus, ...

blood-borne diseases
<table>
<thead>
<tr>
<th>Type of damage</th>
<th>Mechanism</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular</td>
<td>Mutation</td>
<td>Retroviral integration</td>
</tr>
<tr>
<td></td>
<td>Pump dysfunction</td>
<td>Cholera toxin</td>
</tr>
<tr>
<td></td>
<td>Antigenic mimicry</td>
<td>Rheumatic fever</td>
</tr>
<tr>
<td></td>
<td>Ig cleavage</td>
<td>IgA protease</td>
</tr>
<tr>
<td>Cellular</td>
<td>Necrosis</td>
<td>Herpes encephalitis</td>
</tr>
<tr>
<td></td>
<td>Oncogenesis</td>
<td>EBV-related lymphoma</td>
</tr>
<tr>
<td></td>
<td>Morphological</td>
<td>Bacillus anthracis oedema toxin</td>
</tr>
<tr>
<td></td>
<td>Apoptosis</td>
<td>Shigellosis</td>
</tr>
<tr>
<td>Tissue</td>
<td>Inflammation</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td></td>
<td>Malignancy</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td></td>
<td>Fibrosis</td>
<td>Mediastinal fibrosis</td>
</tr>
<tr>
<td></td>
<td>Cytokine dysregulation</td>
<td>Septic shock</td>
</tr>
<tr>
<td>Organ</td>
<td>Ductal obstruction</td>
<td>Worm infestation</td>
</tr>
<tr>
<td></td>
<td>Psychosis</td>
<td>Rheumatic fever</td>
</tr>
<tr>
<td>Organism</td>
<td>Behavioural</td>
<td>Loss of predator fear, hydrophobia</td>
</tr>
</tbody>
</table>

EBV, Epstein-Barr virus; Ig, immunoglobulin.
Pathology of parasitic infection

1. cell & tissue damage directly from invasion, migration, or secretion
2. host immune responses / inflammation
3. site of infection
4. symptomatic / asymptomatic infection

Factors:
- complicate life cycle and developmental stages
- parasite load / co-infection
- host/parasite co-evolution (natural selection)
Pathogenesis

Direct & Indirect

Factors

- Many infections are asymptomatic
- Site of infection
- Worm load
- Immune response
Directly damaged by helminths

Cysts of the tapeworm *Echinococcus* develop in internal organs, grow to large size, and cause damage to tissues by mechanical pressure (hydatid disease).

Physical blockage of the intestine by large nematodes (*Ascaris*) or tapeworms (*Taenia* or *Dipylidium*).
Migratory tract

Masson’s Trichrome
Damaged by immune responses

Origin
- Adult schistosomes in blood vessels around small intestine

Stimulus
- Eggs laid by female
- Eggs carried in blood vessels and trapped in liver

Response
- Hypersensitivity to antigens of larva inside egg cause formation of granuloma.
- Liver sinusoids become blocked, impeding blood flow

Pathology
- Fibrosis of liver
 - Raised portal pressure
 - Perihepatic shunting of blood
 - Hepatomegaly
 - Spleenomegaly
 - Formation of varices
Eosinophilia, cardinal sign of parasitic infection
Granuloma
Infectivity and Virulence

PROTOZOA
- Several ways of infection
- Multiply quickly, rapid onset of symptoms
- Intracellular or latent infections, immune evasion

HELMINTH
- Mostly acquired ingestion of egg or larva
- Disease and symptoms are associated with worm burden
- Larva migrans or zoonotic infections
Parasites & Infected organs
Intestinal protozoan infections

Giardia lamblia (*G. duodenalis* or *G. intestinalis*; intestinal flagellate)

Site: small intestine

Mechanism: ingest cysts contaminated in water or food

Parasite: common pathogen found in duodenum or jejunum of human as trophozoite (heart-shape + flagella) that can attach to the villi or the cyst forms (two or four nuclei) that can pass through the colon and stool

Pathology: “Giardiasis”, usually weak pathogenesis / irritation and low-grade inflammation of duodenal/jejunal mucosa / acute or chronic diarrhea associated with crypt hypertrophy, villous atrophy or flattening and epithelial cell damage / stools may be watery, semisolid, greasy, and foul smelling / weakness, weight loss, abdominal clamp, distention, and flatulence for long periods

Diagnosis: stool exam., immunological techniques
Duodenum
crypt hyperplasia, villous atrophy
Entamoeba histolytica
(intestinal and tissue amoeba)

Site: only in lumen of colon or other tissues e.g. liver,…

Mechanism: ingest cysts contaminated in water or food - oral/anal

Parasite: cyst contain a glycogen vacuole and chromatoid bodies found in colon and mushy feces / amoeboid trophozoite is the form that present in tissues

Pathology: “Amebiasis”, worldwide with 100,000 deaths/year /
trophozoite can invade epithelium and form discrete ulcers with a pinhead-sized center and raised edges → flask-shaped ulcer / mucus, necrotic cells, and amoeba / trophozoite can penetrate muscle layers and serosa and perforate into peritoneal cavity / inflammation, granulomatous tumor-like mass formed on intestinal wall / diarrhea, nausea, vomiting, cramp, loss of appetite, weight loss

Diagnosis: stool exam., immunological techniques
Flask shaped ulcers - Base in submucosa and small opening on the mucosal surface
Cryptosporidium (intestinal sporozoa)

Site: small intestine and tissues e.g. lung

Mechanism: ingest oocysts contaminated in water or food

Parasite: *C. hominis* infect the immunocompromised person

Pathology: “Cryptosporidiosis”, attach to the surface of villi of lower small bowel / mild gastroenteritis / watery diarrhea / severe, intractable diarrhea in AIDS

Diagnosis: stool exam., acid-fast staining, immunological techniques

Cyclospora (intestinal sporozoa)

Parasite: oocysts take days or weeks to become infectious

Pathology: “Cyclosporiasis”, shortening of villi / infiltration of inflammatory cells / diarrhea / anorexia / fatigue / weight loss / often prolonged but ultimately self-limiting
Meronts containing crescent-shaped merozoites

Probable unicellular gametocytes
Blood and tissue protozoan infections

Trypanosoma brucei (blood flagellate)

Site: blood, lymph

Mechanism: tsetse fly bite and release trypomastigotes

Parasite: trypomastigotes found in bloodstream with elongated bodies supporting a longitudinal undulating membrane

Pathology: “Sleeping sickness”, swelling at the site of inoculation, spread to lymph node, bloodstream, and CNS / lassitude, inability to eat, tissue wasting, unconsciousness, death

Diagnosis: blood smear, CSF, lymph node aspirate, serology test
Trypanosoma cruzi (blood flagellate)

Site: intracellular amastigote in tissue e.g. heart muscle, liver, brain (parasympathetic ganglia)

Mechanism: kissing bug feces rubbed into bite or eyes / transfusion / transplacenta

Parasite: trypomastigotes found in bloodstream / amastigote as rounded intracellular stage

Pathology: “Chagas disease”, subcutaneous inflammation nodule or chagoma, unilateral swelling of eyelids / fever, acute regional lymphadenitis / interstitial myocarditis / chronic infection destroy nerve plexuses in alimentary tract walls leads to megaesophagus, megacolon (esp. in Brazilian, but not in Colombian and Central american)

Diagnosis: blood smear (extracellular), tissue biopsy (intracellular)
Leishmania *(blood flagellates)*

Site: skin; rolled edge ulceration

Mechanism: sandfly injects promastigotes; phagocytosis of amastigote by macrophage or monocyte

Parasite: parasite multiply in cytoplasm of the cell → cell burst → release parasites to phagocytose again

Pathology: “Leishmaniasis”, 1) **cutaneous** – ulcer / blisters / hypersensitivity / granulomatous scarring reaction
2) **mucocutaneous or nasopharyngeal** – nasal septum damage / blockage of trachea / respiratory infection 3) **visceral** – spleen hyperplasia

Diagnosis: skin biopsy, PCR, intradermal lieshmanin skin test
Histology of cutaneous leishmaniasis (H&E stain): a) Diffuse chronic inflammatory cell infiltrate in dermis with multiple non-caseating granulomata (×40); b) Tuberculoid-type granuloma with central histiocytes and peripheral inflammatory cells (×100); c) Leishman-Donovan bodies (arrows) within cytoplasm of epithelioid histiocytes (×600); d) Langhans type giant cells (arrows) within a granuloma (×600).
Acanthamoeba castellanii

Site: brain, spinal cord, eye

Mechanism: parasites from fresh water resource penetrate through skin or eye / contaminated contact-lens

Parasite: parasites enter the body invade into the brain

Pathology: granulomatous amebic encephalitis (GAE) / keratitis

Diagnosis: CSF

Naegleria fowleri

Mechanism: nasal membrane \rightarrow cribriform plate of ethmoid bone \rightarrow brain tissue

Pathology: cerebrum/cerebellum basilar hemorrhage and damage / primary amebic meningoencephalitis (PAM) or
Plasmodium (blood sporozoa)

Site: intracellular RBC, liver cells

Mechanism: female Anopheles mosquito bite and release sporozoites from mosq. salivary gland

Parasite: *P. falciparum, P. vivax, P. ovale, P. malariae, P. knowlesi*; sporozoites enter liver cells → merozoites → enter blood stream and invade RBC

Pathology: incubation period between 9-30 days; fever to death; chill from rupture of iRBC; Pf adhere to endothelial lining of blood vessel → cerebral malaria; Pv dormancy stage - hypnozoite

Diagnosis: blood smear
Babesia microti (blood sporozoa)

Site: intracellular RBC

Mechanism: tick bite, blood transfusion

Parasite: morphology is similar to Plasmodium

Pathology: incubation period between 7-10 days; asymptomatic, malaise, anorexia, nausea, fatigue, fever, sweats, myalgia, arthralgia, depression; more severe in senile, splenectomized, AIDS persons

Diagnosis: blood smear
Toxoplasma gondii (tissue sporozoa)

Site: intracellular in CNS, bone marrow

Mechanism: ingest the parasites in undercooked meat, oocysts from cat feces, blood transfusion

Parasite: normal final host is cat, human is intermediate host; parasites develop asexual cycle in various cell types especially macrophage; acute stage disease-tachyzoites (rapid multiplying cells); chronic stage disease-bradyzoites (slow multiplying cells)

Pathology: most infections are asymptomatic, fatal infection may develop in AIDS persons; retinitis or chorioretinitis, encephalitis, pneumonitis can occur in immunosuppressive individuals

Diagnosis: serology test
Sexually transmitted protozoan infections

Trichomonas vaginalis (genito-urinary flagellate)

Site: vagina

Mechanism: person to person through sexual intercourse

Parasite: exists only as a trophozoite (4 free flagella that arise from single stalk and a single fifth flagellum that form undulating membrane), no cyst stage

Pathology: most infections are asymptomatic or mild / female infection normally limited to vulva, vagina, and cervix, does not usually extend to uterus / mucosa inflammation, erosion and cover with a frothy yellow or cream-colored discharge / male may be infected to prostate, seminal vesicles, and urethra

Diagnosis: microscopic exam of discharge, urine, tissue scraping
Trichomonas vaginalis
Intestinal helminthic infections

Enterobius vermicularis (pinworm – intestinal nematode)

Site: lumen of cecum and colon

Mechanism: ingest the eggs; anal-oral behavior

Parasite: found worldwide, common in temperate than tropical climates; most common helminthic infection in mostly children in US

Pathology: perianal pruritus - hypersensitivity reaction to the eggs that laid around the perianal region; irritability and fatigue from loss of sleep

Diagnosis: Scotch Tape test, stool exam
Trichuris trichiura
(whipworm – intestinal nematode)

Site: cecum and colon

Mechanism: ingest the eggs from fecally contaminated food

Parasite: the eggs require 3 weeks of incubation to become infective, larva hatch in small intestine then mature and migrate to colon

Pathology: anterior end of worm lodges in the mucosa → hemorrhage, mucosal cell destruction, infiltration of eosinophils and plasma cells; asymptomatic to abdominal pain, distension, diarrhea, cramps, rectal prolapse

Diagnosis: stool exam
Ascaris lumbricoides
(roundworm – intestinal nematode)

Site: small intestine; larva through lung

Mechanism: ingest the eggs from fecally contaminated food

Parasite: larva hatches in duodenum, penetrate through mucosa, circulatory system, lodge in the lung capillaries, penetrate the alveoli, migrate to trachea and pharynx, larvae are swallowed and return to intestine and become adults

Pathology: high number of parasites cause obstruction of bowel, bile and pancreatic duct; inflammation in lung; reinfeciton causes bronchial spasm, mucus production, cough, eosinophilia

Diagnosis: stool exam
Ancylostoma duodenale and Necator americanus
(hookworm – intestinal nematode)

Site: small intestine; larva through skin, lung

Mechanism: larvae in soil penetrate skin

Parasite: migration is similar to *Ascaris*; adult worms attach to intestinal villi with buccal teeth

Pathology: worms feed on blood and tissue; severe anemia, iron deficiency, diarrhea

Diagnosis: stool exam
Ancylostoma in intestine
Strongyloides stercoralis

(threadworm – intestinal & tissue nematode)

Site: small intestine; larva through skin, lung

Mechanism: larvae in soil penetrate skin

Parasite: worms lay eggs within the intestine, larvae hatch from eggs and pass through the feces; “autoreinfection”; parasites penetrate the intestine, migrate through circulatory system, enter lung, heart

Pathology: severe diarrhea, abdominal pain, gastrointestinal bleeding, coughing, wheezing, hemoptysis

Diagnosis: stool exam, broncheal lavage
Figure 3: High power view showing details of intramucosal eggs and larvae (H and E x 400)
Figure 4: Section of adult worm in gastric biopsy (H and E x 400)
Trichinella spiralis (intestinal & tissue nematode)

Site: adult in small intestine (1-4 months); larva encystes in muscular tissue

Mechanism: eat undercooked meats

Parasite: adult worms in small intestine mate and produce larvae, then larvae penetrate intestine, circulate in the blood, encyst in muscle

Pathology: fever, cough, eosinophilia, calcification, myalgia, weakness

Diagnosis: serology test, muscle biopsy
Fasciolopsis buski (giant intestinal trematode)

Site: small intestine

Mechanism: eat the encysted metacercariae on aquatic vegetation

Parasite: found in east and south asia

Pathology: asymptomatic to ulceration, intestinal wall abscess, diarrhea, abdominal pain, intestinal obstruction

Diagnosis: stool exam
Taenia saginata and T. solium
(tapeworm – intestinal and tissue cestode)

Site: small intestine

Mechanism: eat cysticerci encysted in undercooked beef or pork

Parasite: adult worms can reach lengths of several meters

Pathology: asymptomatic to mild e.g. diarrhea, abdominal pain; medical significant is that human can be the intermediate host

Diagnosis: stool exam (tapeworm segments)
"Cysticercosis" (T. solium larva)

Site: cysticerci in skin, liver, lung, kidney, muscle, eye, brain

Mechanism: as intermediate host by eat eggs via human fecal-oral route

Parasite: similar to the pig, parasites encyst in various human tissues

Pathology: associated with the organ involved e.g. ophthalmocysticercosis, neurocysticercosis

Diagnosis: serology test, CT scans, MRI, x-rays
Diphyllobothrium latum
(broad fish tapeworm – intestinal cestode)

Site: small intestine

Mechanism: eat cysticerci encysted in undercooked fish

Parasite: worm rapidly grow, can be more than 10 meters in length, worm segment can be released > 1 million eggs per day

Pathology: abdominal discomfort, loss of appetite, weight loss, unusual capacity to absorb Vit. B\textsubscript{12}

Diagnosis: stool exam (eggs & tapeworm segments)
Hymenolepis nana
(dwarf tapeworm – intestinal cestode)

Site: small intestine

Mechanism: eat eggs from feces; autoreinfection via fecal-oral route

Parasite: one of the most common tapeworm infection worldwide, mostly in children

Pathology: minor intestinal disturbance

Diagnosis: stool exam (eggs & tapeworm segments)
Blood and tissue helminthic infections

Wuchereria bancrofti and *Brugia malayi*
(lymphatic filariasis – tissue nematode)

Site: adult worms in lymph nodes, lymphatic ducts

Mechanism: mosquito bite transmits larvae

Parasite: found in tropical and subtropical climates, adult worms are found in lymphatic vessels and the female release the larvae, larvae called microfilariae enter the peripheral blood

Pathology: inflammation, fibrotic reactions, lymphangitis, fever, painful lymph node, edema,

Diagnosis: blood smear for microfilariae
Onchocerca volvulus
(river blindness – tissue nematode)

Site: adult worms in skin nodules

Mechanism: black fly bites and transmits larvae

Parasite: prevalence is >17 million, among these 270K are blind / larvae develop into adults in subcutaneous tissues, encapsulated to form nodule (onchocercoma) / microfilariae can migrate within skin

Pathology: tissue damage from larvae releasing, migrating of microfilariae in the interstitial fluid e.g. vitreous humor caused visual loss, visual clouding, photophobia, retinal damage, incurable blindness

Diagnosis: skin snips
Dracunculus medinensis
(guinea worm – tissue nematode)

Site: adult worms in subcutaneous of lower legs, ankles, feet

Mechanism: drink water contaminated with infected copepods

Parasite: after a year of systemic wandering in the body, the worms become mature and mate

Pathology: broad range of pathology / female adults travel to the skin usually the lower legs → blister formation / secondary bacterial infection / severe infection → gangrene, anaphylaxis

Diagnosis: worm in skin blister
“Larva migrans” (zoonotic larval nematode)

Parasite: parasites of animal / humans are dead-end hosts

Pathology: larvae degenerate, induce immune responses to dead or dying larvae, eosinophilia is a common feature

cutaneous larva migrans (CLM): dog hookworm larvae migrate in the epithelial layer of skin → red, itchy tracts on the skin / erythema, and papules at the site of entry / serpiginous tracts of red inflammation

visceral larva migrans (VLM): whaleworm larvae in herring, salmon, rockfish can invade gastric mucosa or intestinal tissue → extreme abdominal pain that mimics appendicitis or small bowel obstruction / eosinophilic granuloma

ocular larva migrans (OLM): dog or racoon round worm larvae migrate to various tissues / can lead to VLM, OLM, or NLM
Clonorchis sinensis and Fasciola sp.
(liver flukes – tissue trematode)

Site: adult worms in bile duct, after migration through liver parenchyma

Mechanism: eat metacercariae in undercooked fish (Clonorchis) or water vegetation (Fasciola)

Parasite: Clonorchis-Chinese liver fluke / Fasciola-Sheep liver fluke

Pathology: asymptomatic, liver fibrosis, bile duct fibrosis and hyperplasia / fever, chill, epigastric pain, eosinophilia, cholangitis, portal fibrosis, jaundice, biliary obstruction, cirrhosis

Diagnosis: stool exam.
Opisthorchis viverrini
(asian liver flukes – tissue trematode)

Site: adult worms in bile duct, after migration through liver parenchyma

Mechanism: eat metacercariae in undercooked fish (Clonorchis)

Parasite: major liver fluke in north-east of Thailand

Pathology: asymptomatic, liver fibrosis, bile duct fibrosis and hyperplasia / fever, chill, epigastric pain, eosinophilia, cholangitis, portal fibrosis, jaundice, biliary obstruction, cirrhosis / “cholangiocarcinoma”

Diagnosis: stool exam.
Paragonimus westermani
(lung flukes – tissue trematode)

Site: adult worm in lung

Mechanism: eat metacercariae in raw crabs and other freshwater crustaceans

Parasite: larvae excyst in gut and migrate to lung, where they become encapsulated, eggs are released and move to trachea, pharynx, then swallowed and pass through the feces

Pathology: eggs induce inflammation and forming granulomas, adults form nodules within lung tissue / pulmonary tuberculosis-paragonimiasis / worms can be found ectopic sites (brain, liver, intestinal wall)

Diagnosis: stool exam
Schistosoma mansoni, S. japonicum, S. haematobium (blood flukes)

Site: adult worm in venous vessels of liver and intestine

Mechanism: cercariae penetrate skin

Parasite: 200 million people are infected worldwide / cercariae penetrate epidermis transform into schistosomules, enter the peripheral circulation and become adults in the hepatoportal system or venous plexus surround the bladder

Pathology: significantly related to eggs → granulomas, fibrosis, portal hypertension / *S. haematobium* → urethral pain, dysuria, hematuria, bladder obstruction, secondary bacterial infection

Diagnosis: stool exam / urine
Echinococcus granulosus (hydatid cyst)

Site: hydatid cysts in liver, spleen, lung, peritoneum, brain

Mechanism: eggs from feces, contact with canine animals

Parasite: three segmented tapeworm found in dog and other canines / similar to pork tapeworm, larvae penetrate gut and migrate to various tissues e.g. liver, spleen, muscle, brain / larvae develop into hydatid cyst (fluid-filled cyst)

Pathology: liver is the most common site / atrophy, portal hypertension, cirrhosis

Diagnosis: serology, CT scans, MRI, x-rays
Ectoparasites

Tick

Mite

Louse

Flea
<table>
<thead>
<tr>
<th>Disease</th>
<th>Agent</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typhus Group (No Eschar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidemic typhus</td>
<td>R. prowazekii</td>
<td>Louse feces</td>
</tr>
<tr>
<td>Brill-Zinsser disease</td>
<td>R. prowazekii</td>
<td>Late reactivation</td>
</tr>
<tr>
<td>Flying squirrel typhus</td>
<td>R. prowazekii</td>
<td>Fleas, lice of flying squirrel</td>
</tr>
<tr>
<td>Murine typhus</td>
<td>R. typhi (mooseri)</td>
<td>Rat flea feces</td>
</tr>
<tr>
<td>Spotted Fever Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocky Mountain spotted fever</td>
<td>R. rickettsii</td>
<td>Tick bite</td>
</tr>
<tr>
<td>Boutonneuse fever</td>
<td>R. conorii</td>
<td>Tick bite</td>
</tr>
<tr>
<td>North Asian and Queensland tick typhus</td>
<td>R. sibirica, R. australia</td>
<td>Tick bite</td>
</tr>
<tr>
<td>Rickettsial pox</td>
<td>R. akari</td>
<td>Mite bite</td>
</tr>
<tr>
<td>Scrub Typhus</td>
<td>R. tsutsugamushi</td>
<td>Chigger bite</td>
</tr>
<tr>
<td>Q Fever</td>
<td>Coxiella burnetii</td>
<td>Droplet inhalation</td>
</tr>
<tr>
<td>Ehrlichiosis</td>
<td>Ehrlichia sennetsu, E. canis</td>
<td>Tick bite</td>
</tr>
</tbody>
</table>
Summary

- intestinal protozoa
- blood and tissue protozoa
- intestinal helminth
- blood and tissue helminth
References

1. Rubins Pathology: Clinicopathologic Foundations of Medicine (2012)
 6th Edition, Raphael Rubin, David Strayer, Emanuel Rubin. Lippincott Williams & Wilkins

2. Jawetz, Melnick, & Adelberg’s Medical Microbiology (2013)

Station 1 – Amoebic colitis

Station 2 – Malaria

Station 3 – Taeniasis

Station 4 – Opisthorchiasis, Cholangiocarcinoma

protozoa

helminth